

The logo for the Florida Society of Pathologists 2019 Annual Conference. It features a teal header with the text 'REGISTER TODAY' in white. Below the header is a teal box containing the text 'FLORIDA SOCIETY OF PATHOLOGISTS' in white, with 'SCIENTIFIC' and 'Pathology Conference' stacked above '2019'. To the left of the text is a graphic of three interlocking hexagons in light blue, teal, and dark teal. At the bottom right is a teal box with the text 'July 13-14 ~ Fort Lauderdale, Florida' and 'The Ritz Carlton'.

1

SECTION ONE

Evidenced-Based Platelet Transfusion Thresholds

2

Introduction

- All platelets and cryoprecipitate, most plasma, and rarely RBCs given for coagulation management.
- 5.9 million non RBC products US/year
 - Plasma – 2.7 million units
 - Platelets – 2.0 million doses
 - 10% given as 4-6 U pools
 - Cryo – 1.2 million units

3

Benefit, Risk, and Cost

- Benefit – varies clinical situation
- Risk – at least 50,000 transfusion reactions year including small number deaths
- Cost – at least \$2.5 billion just for products, more for handling ...

JAMA 2016; 316: 2025-2035

oneblood every drop counts

4

Table 1. Approximate Risk Per Unit Transfusion of Red Blood Cells (RBC)	
Adverse Event	Approximate Risk Per Unit Transfusion of RBCs
Fatal transfusion reaction ¹¹	1:450 ¹²
Transfusion-related circulatory overload ^{13,14}	1:250
Allergic reaction ¹⁵	1:200
Transfusion-related acute lung injury ¹⁶	1:17000
Neurologic events ¹⁷	1:149,000
Hepatitis B virus infection ¹⁸	1:1,208,000 to 1,843,000 ¹⁹
Hepatitis C virus infection ¹⁸	1:4,640,000
Fatal hemolytic ²⁰	1:1,971,000

Why do we believe we need to treat low platelets and long clotting times?

How did low platelet counts and long clotting times become a surrogate for bleeding risk?

J Hess – AABB Webinar 10/09/14

5

Risk of New-Onset Bleeding is the Same with Platelet Counts Between 5-80x10⁹/L

N Engl J Med 2010;362:600-13

oneblood every drop counts

6

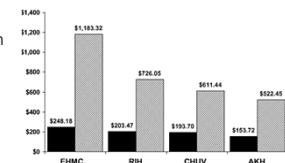
6

Blood Use

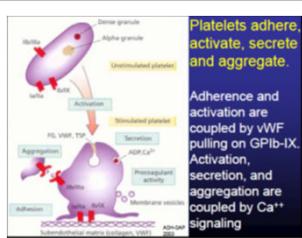
- About half of all components given in coagulation management are given prophylactically
- Prophylactic platelets in thrombocytopenic patients
- Prophylactic platelets and/or plasma before invasive procedures

J Hess AABB Webinar 10/09/14

7


Patient Blood Management

- Blood is expensive and not without risk
- Many patients receive blood in situations where evidence of benefit is poor
- Mounting evidence suggests that conservative use is associated with equivalent outcome


Transfusion 2010; 50: 753-65

8

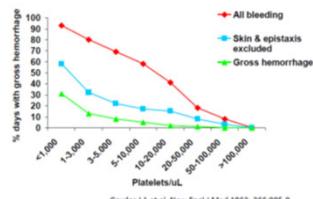
How do Platelets Function?

J Hess AABB Webinar 10/09/14

9

Where Do Transfusion Thresholds Come From?

- Randomized trials
 - 10,000/uL platelet transfusion threshold in cancer patients
- Expert opinion
 - Platelets- 50,000/uL platelet transfusion threshold for major surgery, 100,000/uL for ophtho & neuro
 - Plasma - > 2.0 INR
 - Cryoprecipitate-100 mg/dL fibrinogen threshold


J Hess AABB Webinar 10/09/14

10

10

Relationship Between Platelet Count and Hemorrhage

Gaydos LA et al, New Engl J Med 1982; 286:905-9

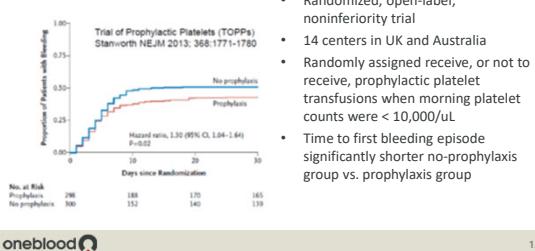
11

11

RCTs comparing prophylactic platelet transfusion at 10K/uL vs. 20K/uL

First Author	≤10,000/uL transfusion trigger			≥20,000/uL transfusion trigger		
	# of patients	% major bleeding	Hemorrhagic deaths	# of patients	% major bleeding	Hemorrhagic deaths
Gil-Fernandez, 1996	103	12	3	87	14	4
Rebulla, 1997	53	22	1	52	20	0
Heckman, 1997	37	0	0	41	0	0
Wandt, 1998	58	18	0	47	17	0
Navarro, 1998	21	42	0	27	30	0
Lawrence, 2001	77	15	0	64	15	0
Zumberg, 2002	78	14	0	81	17	0

Major bleeding generally indicated bleeding that led to transfusion


J Hess AABB Webinar 10/09/14

12

12

Are prophylactic transfusions needed?

- Randomized, open-label, noninferiority trial
- 14 centers in UK and Australia
- Randomly assigned receive, or not receive, prophylactic platelet transfusions when morning platelet counts were < 10,000/ μ L
- Time to first bleeding episode significantly shorter no-prophylaxis group vs. prophylaxis group

13

■ TOPPs Conclusion

- Results of study support need for continued use of prophylaxis with platelet transfusion
- Showed benefit of such prophylaxis for reducing bleeding, as compared with no prophylaxis

N Engl J Med 2013; 368: 1771-1780

14

Platelet Transfusions AABB Clinical Practice Guidelines

- Literature search from 1900 to September 2014
- An expert panel reviewed data
- Developed recommendations using Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework

Ann Intern Med. 2015;162:205-213

15

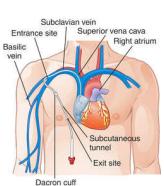
Recommendation 1

- Prophylactically count 10,000/uL or less
- Reduce the risk for spontaneous bleeding
- Hospitalized adult patients
- Hypoproliferative thrombocytopenia
- *Grade: strong recommendation; moderate-quality evidence*

Ann Intern Med. 2015;162:205-213

16

16



Recommendation 2

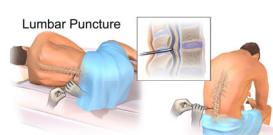
- Prophylactic platelet transfusion for elective central venous catheter placement with platelet count less than 20,000/uL
- *Grade: weak recommendation; low-quality evidence*

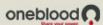
www.medical-dictionary.thefreedictionary.com 07/19

Ann Intern Med. 2015;162:205-213

17

17




Recommendation 3

- Prophylactic platelet transfusion for patients having elective diagnostic lumbar puncture with platelet count less than 50,000/uL
- *Grade: weak recommendation; very low-quality evidence*

www.enwikipedia.org 07/19

Ann Intern Med. 2015;162:205-213

18

■ Recommendation 4

- Prophylactic platelet transfusion for patients having major elective nonneuraxial surgery with a platelet count less than 50,000/ μ L
- *Grade: weak recommendation; very low-quality evidence*

Ann Intern Med. 2015;162:205-213

The logo for OneBlood, featuring the word "oneblood" in a lowercase, sans-serif font with a red dot over the letter "i". To the right of the text is a stylized red "O" shape with a red dot in the center, and the tagline "Share Your Power" in a smaller, italicized font below it.

19

Handwriting practice lines for the word 'apple'.

19

■ Recommendation 5

- Cardiopulmonary bypass (CPB)
- Perioperative bleeding with thrombocytopenia and/or evidence of platelet dysfunction
- *Grade: weak recommendation; very low-quality evidence*

Ann Intern Med. 2015;162:205-213

oneblood
Share your power.

20

20

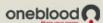
■ Recommendation 6

- The AABB cannot recommend for or against platelet transfusion for patients receiving antiplatelet therapy who have intracranial hemorrhage (traumatic or spontaneous)
- *Grade: uncertain recommendation; very low-quality evidence*

Ann Intern Med 2015;162:205-213

oneblood

21

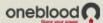

21

Active Bleeding No High-Quality Evidence for Guidance

Criteria	Platelet Count (/uL)
Thrombocytopenic Bleeding Patients	Often recommended maintain count above 50,000/uL

Some facilities use 100,000/uL for ophthalmologic, neurologic and pulmonary hemorrhage

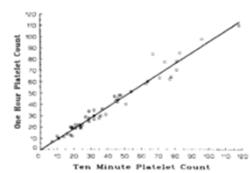
AABB Technical Manual 19th ed. 2017


22

22

Thrombocytopathy

- Causes
 - Congenital (e.g., Glanzmann thrombasthenia)
 - Acquired as the result of disease (e.g., myelodysplasia)
 - Drug treatment (e.g., with aspirin or glycoprotein IIb/IIIa antagonists)
- Transfusion Decisions
 - Acceptable even at normal counts
 - Based upon patient's clinical status
 - Test platelet function

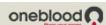

AABB Technical Manual 19th ed. 2017

23

Platelets-Pre and Post Counts

- Platelet count should be obtained
 - Before
 - 10 to 60 minutes after transfusion
- Platelet count should increase by 30,000 to 60,000/uL
- Assess adequacy of response to transfusion

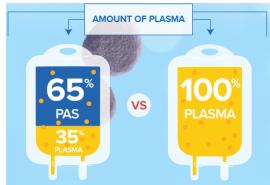
AABB Technical Manual, 19th ed. 2017
Transfusion 1988;28:66-67



24

■ Platelet Products Available

- Pooled platelets (Acrodose)- average 4-6 platelets per pool
- Apheresis Platelets 100% plasma
- Apheresis Platelets in PAS (platelet additive solution 65%, 35% plasma)
- Pathogen Reduced Apheresis Platelets (collected in PAS)


AABB Standards for Blood Banks/Transfusion Services 31st ed. 2018

25

—Apheresis Platelets in PAS (platelet additive solution—65%, 35% plasma)

- Standard apheresis platelet collected and upon finalization of collection
- 65% percent of plasma is removed
- Replaced with additive solution
- Solution added is InterSol Solution, Platelet Additive Solution 3 (also called PAS 3)

AABB Technical Manual. 19th ed. 2019

26

Apheresis Platelets in PAS

- Study conducted at six sites 14,005 transfusions
 - Allergic transfusion reactions - 1.37% vs. 0.55%
 - Febrile nonhemolytic transfusion reactions - 0.66% to 0.40%
 - Removal of plasma, anti-A and anti-B titers may be decreased potentially reducing risk of hemolytic transfusion reactions that can occur with high-titer donors
 - Platelet viability and function is not affected
- Decrease in AB titer allows for products to be used interchangeably with patients with different ABO

Transfusion 2014; 54: 1927-1934

Transfusion 2014; 54: 1927-1934
J Clin Apheresis 2012; 27: 93-98

Transfusion 2012; 52: 1237-1244

oneblood
Share your power.

27

Pathogen Reduction Technology (PRT)

Mechanism of Action

- INTERCEPT® Blood System for Platelets uses amotosalen and UVA light to irreversibly cross-link nucleic acids
- Blocks replication of viruses, bacteria, parasites and T-cells; rendering them 'inactive'
- After processing, residual amotosalen is negligible

SCABB Presentation A Prichard 12/18

28

Efficacy

- November 2010 - April 2016
- 469 hematology-oncology patients with chemotherapy-induced thrombocytopenia
- Randomized to 567 transfusion treatment periods
 - 283 control arm – platelets in plasma (PP)
 - 284 intervention arm (PRT)

Blood 2018; 132: 223-231

29

Efficacy

- 3% absolute difference (51% PP vs. 54% PRT) significant (WHO classification - grade ≥ 2 bleeding) $P=.012$
- Transfusion increment parameters were lower and transfusion interval shorter- PRT arm
- There was no difference in proportion of patients developing HLA class I alloantibodies

Spring 2018 class I

30

30

Efficacy

- Other studies
 - Small losses in platelet function
- Effective eliminating transfusion-associated graft vs. host disease and the need for irradiation

ISBT Science Series. 2014; 9:44-50 Conventional (left) and Psoralen-Treated (right) Apheresis Platelets
 Vox Sanguinis 2017; 112; 606-613

31

31

Platelet Components

Equivalent to 4-6 Whole-Blood Derived Platelets

	Apheresis Platelets- Includes Plasma, PAS and PRT	Prestorage Pooled Platelets (Acrodose)
Advantages	<ul style="list-style-type: none"> • Single donor exposure • HLA matching possible 	<ul style="list-style-type: none"> • Closed system • Allows pooling 4-6 ABO identical units
Disadvantages	<ul style="list-style-type: none"> • Limited availability 	<ul style="list-style-type: none"> • Matching impractical
Platelets	<ul style="list-style-type: none"> • $\geq 3.0 \times 10^{11}$ ($\geq 90\%$) 	<ul style="list-style-type: none"> • $\geq 5.5 \times 10^{10}$ ($\geq 75\%$)/each unit

Transfusion Therapy. 3rd ed. 2011
 Technical Manual. 19th ed. 2017
 oneblood AABB Standards for Blood Banks/Transfusion Services 31st ed. 2018

32

Platelet Components

	Apheresis Platelets- Includes Plasma, PAS and PRT	Prestorage Pooled Platelets (Acrodose)
Leukocyte Reduction	<ul style="list-style-type: none"> • Prestorage • Yes 	
Bacterial Detection		
Shelf Life	<ul style="list-style-type: none"> • 5 days (7 days with point of release testing*) 	<ul style="list-style-type: none"> • 5 days
Storage	<ul style="list-style-type: none"> • 20-24 C continuous gentle agitation 	
Transport	<ul style="list-style-type: none"> • As close to 20-24 C-maximum time without agitation: 30 hours 	
pH	<ul style="list-style-type: none"> • ≥ 6.2 end of allowable storage period ($\geq 90\%$) 	

*Does not include PRT
 Transfusion Therapy. 3rd ed. 2011
 Technical Manual. 19th ed. 2017
 oneblood AABB Standards for Blood Banks/Transfusion Services 31st ed. 2018

33

Fiscal Years 2013-2017

- TACO - 32%
- TRALI and Possible TRALI- 30%
- Microbial contamination- 12%
- HTR due to non-ABO incompatibilities -11%
- Remainder- <10% each

Fatalities Reported to FDA Following Blood Collection and Transfusion Annual Summary for FY2017

oneblood

34

Transfusion Related Acute Lung Injury (TRALI)

Figure 1: TRALI Cases, FY2003 - FY2017

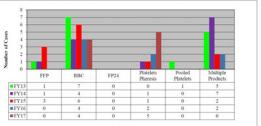



Figure 2: Reports of TRALI Cases by Implicated Blood Product, FY2013 - FY2017

FFP - Fresh Frozen Plasma
RBC - Red Blood Cells
FFP24 - Plasma Frozen within 24 hours

FDA Fatalities Report FY2017

oneblood

35

SECTION TWO
Platelet Refractoriness and Patient Response

oneblood

36

Corrected Count Increment (CCI)

CCI = $\frac{\text{Platelet increment} \times \text{BSA} (\text{m}^2)}{\text{Platelets transfused} (\times 10^9)}$

Example: A patient with a BSA of 2.0 m^2 and a platelet count of $5000/\mu\text{L}$ receives a unit of apheresis platelets containing 4×10^9 platelets, and the posttransfusion platelet count is $25,000/\mu\text{L}$. The CCI may be calculated as follows:

$$\text{CCI} = \frac{20 \times 2.0}{4.0} = 10$$

Successful transfusion: ≥ 7.5
Refractory patient: Two or more transfusions with $\text{CCI} < 5.0$

Why the CCI is helpful...

patient's size
number of platelets transfused

Large patient (BSA = 2.0 m²)
Height 6'4"; weight 220 lbs
Small number of platelets transfused
(4.0 x 10⁹)
CCI = 11.5
SUCCESSFUL

Small patient (BSA = 1.6 m²)
Height 5'4"; weight 175 lbs
Large number of platelets transfused
(8.0 x 10⁹)
CCI = 4.8
UNSUCCESSFUL

oneblood donate your platelets

Transfusion Therapy, 3rd ed. 2011
Technical Manual, 19th ed. 2017

37

Refractory Patient

- Poor increments $\leq 10,000/\mu\text{L}$ on at least two posttransfusion counts

Technical Manual, 19th ed. 2017

oneblood donate your platelets

38

Corrected platelet count increments after apheresis platelet units - PLADO study

Percent of Apheresis Transfusions

54-hour CCI (in thousands)

15% (520/3425) of transfusions of units of apheresis platelets resulted in a CCI < 5000, equivalent to an increase in platelet count of < 10,000/ μL .

N Engl J Med 2010;362:600-13

oneblood donate your platelets

39

Alloimmune Platelet Refractoriness

Category	Percentage
Immune Causes	20 %
Non Immune Causes	80 %

Nonimmune

- Fever
- Macrolides (eg. amoxicillin, vancomycin)
- Schizophrenia
- Sepsis
- Disseminated intravascular coagulation
- Hemorrhage
- Transfusion reaction
- Griffiths-Hodg disease
- Prolonged platelet storage

Immune

- HLA antibodies
- Antibodies to platelet compatibility
- Human platelet antigen (HPA) antibodies
- Drug-dependent autoantibodies

40

Patterns of response to platelet transfusion

The graph plots Platelet count (in thousands/µL) on the y-axis (0 to 50) against Hours post-transfusion on the x-axis (0 to 72). Three lines represent different response patterns:

- Normal survival:** Platelet count starts at ~48,000, peaks at ~50,000 at 1 hour, and then gradually declines to ~10,000 by 72 hours.
- Shortened survival:** Platelet count starts at ~48,000, peaks at ~50,000 at 1 hour, and then drops sharply to 0 by 24 hours.
- No response:** Platelet count starts at ~48,000, peaks at ~50,000 at 1 hour, and then remains flat at 0 until 72 hours.

Hours post-transfusion	Normal survival (k/µL)	Shortened survival (k/µL)	No response (k/µL)
0	48	48	48
1	50	50	50
24	20	0	0
72	10	0	0

41

ABO Compatible

- Some patients may be refractory from ABO
- Provide one or more transfusions of donor PLTs ABO compatible
- Monitor post-transfusion increments

42

HLA antibody screening test

Panel-reactive antibody (PRA)

- Percent of HLA targets to which patient has made antibodies
- Different assays
 - Lymphocytotoxic assay (with or without antiglobulin enhancement)
 - Enzyme-linked immunoassay, or fluorescence-based assay
- Choice of assay not critical although serial assays are best done by the same method for ease of comparison

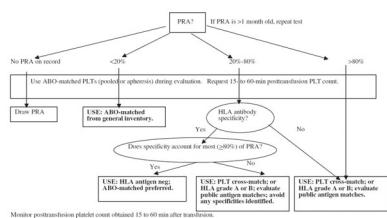
Transfusion 2007;47:374-378

43

oneblood

43

Undetectable PRA (0 percent sensitization)


- HLA matching will not be beneficial
- Other strategies should be tried (discussed later)
- For patients with positive PRA result, an algorithm can be used

oneblood Share your power.

44

44

Positive PRA - Decision algorithm for HLA-selected platelets used at Massachusetts General Hospital

oneblood

Transfusion 2007;47:374-378

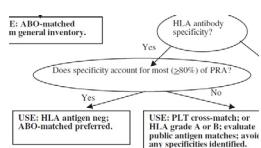
45

45

Strategies for HLA-selected Platelets

- HLA antigen avoidance
- PLT crossmatching
- HLA-matching

Transfusion 2007;47:374-378


oneblood

46

46

HLA-Antigen Avoidance

- Identify HLA specificity that accounts for majority of PRA
- Most straightforward approach

Transfusion 2007;47:374-378

oneblood
Share your power.

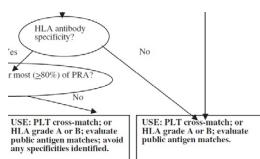
47

47

HLA lab is unable to identify specificity

- Donor selection can proceed along two fronts

Transfusion 2007;47:374-378


oneblood

48

48

Platelet Crossmatching - Fastest

- Transfusible units with higher survival rate *in vivo* can be located without need for HLA typed donors
- Patient HLA typing and/or HLA antibody identification is not required

Transfusion 2007;47:374-378

oneblood

49

49

Platelet Crossmatching

- Strong HLA antibodies directed against antigens not found on PLTs will not be detected
- Lower costs to support mildly refractory patients or those with short to medium term matched platelet support
- Wide availability of some crossmatch methodologies

Transfusion 2007;47:374-378

oneblood

50

50

Disadvantages of Platelet Crossmatching

- Sensitivity to mediating antibodies varies depending upon which crossmatch methodology is utilized
- Highly alloimmunized patients may require numerous (e.g. ≥ 20) crossmatches to identify a compatible unit
- Logistical challenges posed by managing inventory of platelet units used in crossmatch testing

Transfusion 2007;47:374-378

oneblood

51

51

High-PRA Patients

- While crossmatch-compatible PLTs are being tried
- Explore HLA matched platelets based on HLA-A and HLA-B types of recipient

```

graph TD
    A["PRA?"] --> B["If PRA is >1 month old, repeat test"]
    B --> C["30%-80%"]
    C --> D[">80%"]
    D --> E["ng evaluation. Request 15- to 60-min posttransfusion PLT count."]
    E --> F["HLA antibody specificity?"]
    F --> G["Yes"]
    G --> H["USE PLT cross-match or HLA grade A or B; evaluate public antigen matches; avoid any specificities identified."]
    H --> I["in ed."]
    F --> J["No"]
    J --> K["USE PLT cross-match or HLA grade A or B; evaluate public antigen matches."]
    K --> L["in ed."]
  
```

Transfusion 2007;47:374-378

52

52

Degree of Matching (Duquesnoy Grades) for HLA Antigens HLA Class I A and B Loci

- "Standard" approach is to identify a donor whose four HLA-A and HLA-B antigens match those of the recipient (grade A match) - may be difficult to find
- Alternatives - grade A, B1u, B1x, or B2u matches,
- Most hospitals do not want to accept B2x matches or lower grades - much less likely to be successful

A	4 antigens match
B1U	3 antigens detected in the donor; all match
B1X	3 donor antigens match; 1 cross-reactive
B2U	2 antigens detected in the donor; both match
B2UX	3 antigens detected in the donor; 2 match and 1 cross-reactive
B2X	2 donor antigens match; 2 cross-reactive
C	1 antigen in donor not present in recipient and not cross-reactive
D	2 antigens in donor not present in recipient and not cross-reactive

Transfusion Medicine Self-Assessment and Review, 3rd ed. 2017

Transfusion 2007;47:374-378

53

53

HLA Public Antigens

- Consider not only the public groups of patient (public antigens to match)
- Public groups of target antigens that reacted in PRA (public antigens to avoid)

```

graph TD
    A["HLA antibody specificity?"] --> B["Yes"]
    B --> C["it for most (>80%) of PRA?"]
    C --> D["1"]
    D --> E["USE: PLT cross-match; or HLA grade A or B; evaluate public antigen matches; avoid any specificities identified."]
    E --> F["in ed."]
    A --> G["No"]
    G --> H["USE: PLT cross-match; or HLA grade A or B; evaluate public antigen matches."]
    H --> I["in ed."]
  
```

Transfusion 2007;47:374-378

54

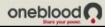
54

HLA Public Antigens

- Public matching can often identify donor who gives good increment much more quickly than private antigen matching
- Strategy of matching for public antigens generally results in greater number of suitable donors

Transfusion 2007;47:374-378

55


55

Platelet Antigens

- Alloimmunization to platelet-specific antigens should be considered
- Sensitization to platelet-specific antigens may be cause of refractoriness when a donor product that is well matched for HLA fails to give an increment
- Identify antibodies to platelet antigens, test patient's serum with a commercially available enzyme assay

Transfusion 2007;47:374-378

Vox Sang 1998; 74(Suppl 2):359-63

56

56

Non-HLA

- Current era of leukoreduction, immune causes of refractoriness often reflecting a secondary immune response is particular problem with multiparous females
- Outside of this group nonimmune causes of PLT refractoriness are more common than immune-mediated causes and so refractory patients with a low PRA are often commonplace

Transfusion 2007;47:374-378

N Engl J Med 1997; 337: 1861-9

57

57

Drug-related thrombocytopenia

- Degree of thrombocytopenia is considered clinically unacceptable
- Serious paring down of medications, especially antibiotics, may be tried

Transfusion 2007;47:374-378
Curr Hematol Rep 2003; 2:158-64

58

58

■ What Does not Work-Shock and Awe

- Massive doses of platelets is rarely effective and for most patients
- Little more than an invitation to serious transfusion reactions
- Exception
 - Patient splenomegaly for whom double dose of platelets may be needed to achieve typical platelet increment

Transfusion 2007;47:374-378

oneblood
Share your power.

59

59

What Does not Work- Treatments for Another Problem

- Platelet refractoriness not the same as autoimmune thrombocytopenia
- Treatments such as intravenous anti-D or high-dose intravenous immunoglobulin G fail to improve platelet increments among refractory patients

Transfusion 2007;47:374-378

oneblood Share your power.

60

60

What Does not Work- Voodoo drips

- Notion of a continuous drip of ineffective platelets has never made any sense largely “bad theater”
- Equally theater is arranging for infusion of platelets to be simultaneous to performance of a bedside invasive procedure
- We simply do not do this!

Transfusion 2007;47:374-378

61

Handwriting practice lines for the word 'apple'.

61

Local Bleeding—Local Treatment

- Appropriate hemostatic treatment for nonimmune refractory patient is local treatment
- For example, clinical team may be frustrated by continued oozing at site of insertion of central line despite repeated attempts to stop this with platelet transfusions
- This situation is better approached through use of topical agents at site of bleeding
- Topical fibrin glue or extra suture or two may be all that is needed

Transfusion 2007;47:374-378

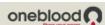
62

62

Hemostatic Defects

- Hypofibrinogenemia, coagulation factor defects, or depressed von Willebrand's factor
- Addressed with transfusion/pharmaceuticals

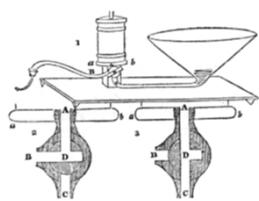
Transfusion 2007;47:374-378


63

63

Conclusions

- Prophylactic platelet transfusions remain standard of care
- Laboratory testing and donor selection are necessary steps in support of platelet transfusion refractory patient
- Many patients continue to require additional transfusion approaches and/or adjunctive therapy to treat and prevent bleeding


Transfusion 2007;47:374-378

64

64

200th anniversary year of the first successful attempts at human-to-human transfusion

Transfusion Medicine Reviews 2018:
DOI: 10.1016/j.tmr.2018.08.003

65

65

The End...Questions

Richard.Gammon@oneblood.org
407-947-7963

Florida Society of Pathologists
July 14, 2019

66